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The linear stability of two viscous electrically conducting quiescent fluids, separated
by a plane interface, and permeated by a sheared magnetic field parallel to the
interface is studied. An analytical study using a short-wavelength approximation
shows that, in the absence of surface tension, if the magnetic field vanishes on the
unperturbed interface, the configuration is always unstable provided the magnetic
diffusivities of the two fluids are different. When the unperturbed magnetic field does
not vanish on the interface it may stabilize or destabilize the configuration depending
on the values of certain parameters. The growth rates for the instability obtained
using a short-wavelength approximation are shown to be in good agreement with the
results obtained by numerical solution. The numerical study further shows that the
instability has maximum growth rate for wavenumbers of order unity and persists
even for long-wavelength perturbations. A physical explanation for the instability is
provided.

1. Introduction
It was first shown by Yih (1967) that an instability can occur when two co-flowing

fluids have different viscosities. He considered plane Couette–Poiseuille flow of two
superposed layers of fluid and showed that a long-wavelength instability occurs,
which persists for arbitrarily small values of the Reynolds number, provided the
two fluids have different viscosities. This work was further extended to three fluid
layers (Li 1969) and to cylindrical geometry (Hickox 1971). However, it was not clear
whether the instability was attributable to the presence of rigid boundaries, as in the
classical problem of stability of plane Poiseuille flow of a homogeneous fluid (Lin
1955; Drazin & Reid 1981), or to the jump in viscosity across the interface. This
prompted Hooper & Boyd (1983) to carry out a stability analysis of an unbounded
flow configuration in which two viscous fluids occupying the half spaces y ′ > 0 and
y ′ < 0, have a velocity field given by (a1y

′, 0, 0) for y ′ > 0 and (a2y
′, 0, 0) for y ′ < 0,

a1 and a2 being two constants of the two shearing flows, which satisfy µ1a1 =µ2a2,
where µ1 and µ2 are the viscosities of the two fluids. They showed that when the two
fluids have equal densities and the surface tension at the interface is neglected, the
configuration is unstable to short wavelength perturbations provided the viscosities
of the two fluids are different. A physical explanation for this instability was provided
by Hinch (1984). More recently, this instability was also confirmed by numerical
simulations (Li, Renardy & Renardy 1998; Renardy & Li 1999).
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Figure 1. A sketch of the physical problem.

In this paper, we discuss a similar but new kind of instability. We consider
an unbounded configuration of two viscous electrically conducting fluids, both of
which are at rest initially and are permeated by a sheared magnetic field parallel
to the interface, and study the stability of this configuration to two-dimensional
perturbations. The two fluids, identified by subscripts 1 and 2, occupy the half spaces
y ′ > 0 and y ′ < 0 as shown in figure 1. The magnetic shears s1 and s2 are constants
and B0 is the magnetic field at the interface. We assume that the shears s1 and s2

are positive and B0 is non-negative. This can be ensured by a suitable choice of
the coordinate system. Further, λ1 and λ2 are the magnetic diffusivities of the two
fluids. Following Hooper & Boyd (1983), we first carry out a perturbative study for
short-wavelength disturbances. We find that a discontinuity in magnetic diffusivity in
the presence of a magnetic shear can give rise to an instability. A condition for the
stability of the configuration is derived. If we assume that the fluids are non-magnetic,
the magnetic diffusivities of the two fluids will be different provided their electrical
conductivities are different and we can, therefore, say that the instability is due to a
discontinuity in the electrical conductivity. In order to confirm the predictions of the
short wavelength analysis, we carry out a numerical study which does not make an
assumption of short wavelength. This shows that the instability is not restricted to
short wavelengths.

A magnetic field has been shown to have a stabilizing effect on many hydrodynamic
instabilities. It was shown that the Kelvin–Helmholtz instability can be stabilized by
a constant magnetic field parallel to the direction of flow (Chandrasekhar 1981) or by
a crossed magnetic field parallel to the interface (Fejer 1964). In the present study, we
find, by contrast, that in the presence of a discontinuity in the electrical conductivity,
under certain conditions, a sheared magnetic field can give rise to a new instability.

Stratification of electrical conductivity is known to cause instability in the presence
of electric current. For two superposed fluids of different electrical conductivities
Sneyd (1985, 1992), Sneyd & Wang (1994) and Davidson & Lindsay (1998) had
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studied the stability of the configuration in the context of aluminium reduction cells
and shown that under certain conditions an instability can occur when there is an
equilibrium current in a direction normal to the interface between the two fluids. Again
a continuous variation in electrical conductivity in the presence of a sheared magnetic
field is known to give rise to a rippling instability (Furth, Killeen & Rosenbluth 1963;
White 1989). However, the instability analysed in this paper is different from these
earlier studies. This is discussed in more detail in § 6.

In § 2, we give a mathematical formulation of the stability problem; in § 3, we carry
out a regular perturbation analysis of the stability problem for disturbances of short
wavelength; and in § 4, we carry out a numerical solution using the finite-difference
method, the details of the numerical method are given in the Appendix. In § 5, we
give a physical explanation of the mechanism of instability along with a description
of the experimental set-up for the realization of a sheared magnetic field in the two
fluids. A discussion of the results is given in § 6.

2. Formulation of the stability problem
We consider a configuration of two quiescent, viscous, electrically conducting fluids

in the presence of a sheared magnetic field shown in figure 1. We assume both fluids
are incompressible. The governing equations in each fluid are (Shercliff 1965)

∂v

∂t ′ + v · ∇v = − 1

ρ
∇p∗ +

1

ρµ0

B · ∇B + ν∇2v, (2.1)

∂ B
∂t ′ + v · ∇B = B · ∇v + λ∇2 B, (2.2)

∇ · v = 0, (2.3)

∇ · B =0, (2.4)

where ρ, ν and λ are the density, kinematic viscosity and magnetic diffusivity of the
fluid, v is the fluid velocity, B is the magnetic field, p∗ is the total (fluid + magnetic)
pressure and µ0 is the permeability of a vacuum. We consider an unperturbed state
given by

v = 0, B = (B0 + sy ′, 0), p∗ =p0, (2.5)

where B0, s and p0 are constants. It can be readily shown that (2.5) is consistent with
(2.1)–(2.4). We now consider a two-dimensional perturbation from (2.5) given by

v =(u′, v′), B = (B0 + sy ′ + b′
x, b′

y), p∗ =p0 + p′, (2.6)

where u′, v′, b′
x , b′

y and p′ are functions of x ′, y ′ and t ′. The reason for restricting
our study to two-dimensional perturbations and its limitations are discussed in § 6.
Substituting from (2.6) into (2.1)–(2.4), linearizing in the perturbations, and assuming
normal modes with (x ′, t ′)-dependence of the form exp[iα′(x ′ − c′t ′)], we obtain

− iα′c′u′ = − 1

ρ
iα′p′ +

1

ρµ0

(B0 + sy ′)iα′b′
x +

sb′
y

ρµ0

+ ν

(
d2

dy ′2 − α′2
)

u′, (2.7)

− iα′c′v′ = − 1

ρ

dp′

dy ′ +
1

ρµ0

(B0 + sy ′)iα′b′
y + ν

(
d2

dy ′2 − α′2
)

v′, (2.8)

− iα′c′b′
x + sv′ =(B0 + sy ′)iα′u′ + λ

(
d2

dy ′2 − α′2
)

b′
x, (2.9)
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− iα′c′b′
y = (B0 + sy ′)iα′v′ + λ

(
d2

dy ′2 − α′2
)

b′
y, (2.10)

iα′u′ +
dv′

dy ′ = 0, (2.11)

iα′b′
x +

db′
y

dy ′ = 0. (2.12)

We now consider the boundary conditions at the interface between the two fluids.
In the unperturbed state, balance of normal stress and continuity of the tangential
component of the magnetic field require p0 and B0 to have the same value in the two
fluids, while continuity of the tangential component of electric field requires

λ1s1 = λ2s2. (2.13)

Let y ′ = η′(x ′, t ′) be the equation of the interface between the two fluids in the
perturbed state. The kinematic boundary condition at the interface, after linearizing
and assuming normal modes as before, gives

v′ = −iα′c′η′ at y ′ = 0. (2.14)

We now impose the requirement of continuity of the tangential and normal
components of velocity, shear and normal stress, tangential and normal components
of the magnetic field and tangential component of the electric field at the perturbed
interface. Again linearizing and assuming normal modes we have

u′
1 = u′

2 at y ′ = 0, (2.15)

v′
1 = v′

2 at y ′ =0, (2.16)

µ1

(
du′

1

dy ′ + iα′v′
1

)
= µ2

(
du′

2

dy ′ + iα′v′
2

)
at y ′ = 0, (2.17)

− p′
1 + 2µ1

dv′
1

dy ′ − T α′2η′ = − p′
2 + 2µ2

dv′
2

dy ′ at y ′ = 0, (2.18)

s1η
′ + b′

1x = s2η
′ + b′

2x at y ′ = 0, (2.19)

b′
1y = b′

2y at y ′ =0, (2.20)

λ1

(
iα′b′

1y − db′
1x

dy ′

)
= λ2

(
iα′b′

2y − db′
2x

dy ′

)
at y ′ = 0. (2.21)

In (2.18), T is the surface tension, assumed constant. Equation (2.19) is written on the
assumption that the permeabilities of the two fluids are equal, which is true if both
fluids are assumed to be non-magnetic. In deriving (2.21), the boundary condition
(2.13) has been used. Finally, the perturbations must vanish as y ′ → ±∞.

We now introduce a streamfunction ψ(y ′) and a similar function φ(y ′) for the
magnetic field such that

u′ =
dψ

dy ′ , v′ = − iα′ψ, (2.22)

b′
x =

dφ

dy ′ , b′
y = − iα′φ. (2.23)
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Equations (2.11) and (2.12) are now identically satisfied. We now write the linearized
equations in terms of ψ and φ. Eliminating p′ from (2.7) and (2.8) and using (2.22)
and (2.23), we obtain

− iα′c′
(

d2

dy ′2 − α′2
)

ψ

=
iα′

ρµ0

(B0 + sy ′)

(
d2

dy ′2 − α′2
)

φ + ν

(
d2

dy ′2 − α′2
)2

ψ. (2.24)

Substituting (2.22) and (2.23) into (2.10), we obtain

− iα′c′φ = iα′(B0 + sy ′)ψ + λ

(
d2

dy ′2 − α′2
)

φ. (2.25)

The equation we obtain by substituting (2.22) and (2.23) into (2.9) is identical to
the equation obtained by differentiating (2.25) with respect to y ′ and is, therefore,
redundant. Of the boundary conditions (2.15) – (2.21), it can be shown that (2.21) is
redundant. To see this we substitute (2.23) into (2.21) to obtain

λ1

(
d2

dy ′2 − α′2
)

φ1 = λ2

(
d2

dy ′2 − α′2
)

φ2 at y ′ = 0. (2.26)

Using (2.25), it is seen that this condition follows from ψ1 = ψ2 and φ1 = φ2 at y ′ =0
which are required by (2.16) and (2.20). The remaining boundary conditions (2.15)–
(2.20) can be expressed in terms of ψ and φ by substituting for p′ from (2.7), η′

from (2.14) and using (2.22) and (2.23). Therefore, equations (2.24) and (2.25) in the
two fluids, the boundary conditions (2.15)–(2.20), written in terms of ψ and φ, and
the requirement that the perturbations vanish as y ′ → ±∞, together constitute the
eigenvalue problem governing linear stability.

The geometry of the problem does not define a length scale. Following Hooper &
Boyd (1983) we define a length scale (λ2(µ0ρ2)

1/2/s2)
1/2 and a time scale (µ0ρ2)

1/2/s2

and introduce non-dimensional variables

(X, Y, 1/α) =

(
s2
2

λ2
2µ0ρ2

)1/4

(x ′, y ′, 1/α′), C =

(
µ0ρ2

s2
2λ

2
2

)1/4

c′. (2.27)

Further, we define

(f1, f2) =

(
1

µ0ρ2

)1/2

(φ1, φ2), (2.28)

so that f1 and f2 have the same dimension as ψ1 and ψ2. Typically, for interfacial
modes, the length scale normal to the interface is proportional to the wavelength.
Therefore, following Hooper & Boyd (1983), for convenience, we define rescaled
coordinates and a rescaled phase speed by

(x, y) = α(X, Y ), C1 = αC. (2.29)

Substituting from (2.27)–(2.29) into (2.24) and (2.25) and writing the equations
separately for the two fluids, we have(

d2

dy2
− 1

)2

ψ1 = −iα−2 m

rP2

[
C1

(
d2

dy2
− 1

)
ψ1 + r(αM + χy)

(
d2

dy2
− 1

)
f1

]
, (2.30)

(
d2

dy2
− 1

)2

ψ2 = −iα−2 1

P2

[
C1

(
d2

dy2
− 1

)
ψ2 + (αM + y)

(
d2

dy2
− 1

)
f2

]
, (2.31)
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d2

dy2
− 1

)
f1 = −iα−2χ[C1f1 + (αM + χy)ψ1], (2.32)

(
d2

dy2
− 1

)
f2 = −iα−2[C1f2 + (αM + y)ψ2]. (2.33)

Similarly, writing boundary conditions (2.15)–(2.20) in terms of ψ and φ and using
(2.27)–(2.29), we obtain

ψ1 − ψ2 = 0 at y = 0, (2.34)

dψ1

dy
− dψ2

dy
=0 at y = 0, (2.35)

(
d2

dy2
+ 1

)
ψ1 − m

(
d2

dy2
+ 1

)
ψ2 = 0 at y = 0, (2.36)

P2

m

(
d2

dy2
− 3

)
dψ1

dy
− P2

(
d2

dy2
− 3

)
dψ2

dy

= −iα−2

[
C1

r

dψ1

dy
+ αM

df1

dy
− χf1 − Sα3

(χ − 1)

df1

dy

]

+ iα−2

[
C1

dψ2

dy
+ αM

df2

dy
− f2 − Sα3

(χ − 1)

df2

dy

]
at y = 0, (2.37)

C1

(
df2

dy
− df1

dy

)
− (χ − 1)ψ1 = 0 at y = 0, (2.38)

f1 − f2 = 0 at y = 0. (2.39)

Here,

m =
µ2

µ1

, r =
ρ2

ρ1

, χ =
λ2

λ1

=
s1

s2

, P2 =
ν2

λ2

,

M =
B0(

µ0ρ2λ
2
2s

2
2

)1/4
, S =

T

λ2ρ2

(
µ0ρ2

s2
2λ

2
2

)1/4

, (2.40)

where M and S are the magnetic and surface tension parameters. In deriving (2.37),
we have used (2.38). Further,

ψ1 → 0, f1 → 0 as y → ∞; ψ2 → 0, f2 → 0 as y → −∞. (2.41)

It may be noticed that there is another length scale in the problem, given by B0/s2

and the parameter M is the ratio of this length scale to the length scale (λ2
2µ0ρ2/s

2
2 )

1/4

which we have used for defining non-dimensional variables.

3. A regular perturbation analysis for short wavelength
It is clear from the form of equations (2.30)–(2.33) and the boundary conditions

(2.34)–(2.39) that 1/α2 can be used as an expansion parameter for carrying out a
regular perturbation analysis for disturbances of short wavelength. Accordingly, we
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assume the expansions

ψ1(y) =

∞∑
n=0

an(y)

α2n
e−y, ψ2(y) =

∞∑
n=0

bn(y)

α2n
ey,

f1(y) =

∞∑
n=0

gn(y)

α2n
e−y, f2(y) =

∞∑
n=0

dn(y)

α2n
ey,

C1 =

∞∑
n=0

cn

α2n
.




(3.1)

As in Hooper & Boyd (1983), the factors e−y and ey , though not essential, are retained
for convenience. We further assume that αM = O(1) and α3S = O(1). Using (2.27) and
(2.40), the first assumption can be written as α′B0/s2 = O(1), in other words, the
wavelength of the perturbation is of the same order as the length scale B0/s2. We
substitute from (3.1) into (2.30)–(2.39) and (2.41) and carry out the analysis order by
order exactly as in Hooper & Boyd (1983). To zeroth order, we obtain

a0(y) = 0, b0(y) = 0, g0 = K0, d0 = K0, c0 = 0, (3.2)

where K0 is a non-zero constant. Proceeding to the next order, we obtain

c1 =
i

4P2

(
m

1 + m

)
[2αM(χ − 1) + (χ − 1)2 − 2Sα3]. (3.3)

We may proceed to higher-order approximations in α−2, but (3.3) seems adequate
for discussing the instability of the mode. It can readily be seen that to O(α−2) the
configuration will be stable or unstable depending on whether

2αM(χ − 1) + (χ − 1)2 − 2Sα3 < or > 0. (3.4)

This shows that if surface tension is absent (S = 0) and the magnetic field vanishes
at the unperturbed interface (M = 0), the configuration is always unstable provided
the two fluids have different magnetic diffusivities (χ �=1). When the magnetic field
does not vanish on the unperturbed interface (M �=0), it may have a stabilizing or
destabilizing effect depending on the sign of M , i.e. on the direction of the magnetic
field at the unperturbed interface. Surface tension always has a stabilizing effect. A
shear in the magnetic field is necessary for this instability to occur. This is not obvious
from (3.3) because it has been obtained after scaling which involves the magnetic
shear. From (2.27), (2.29) and (3.1)–(3.3), we find that the dimensional growth rate,
correct to first order in 1/α2, is

α′c′ =

(
s2
2

µ0ρ2

)1/2
1

α3

i

4P2

(
m

1 + m

)
[2αM(χ − 1) + (χ − 1)2 − 2Sα3]. (3.5)

From this expression, it can readily be seen that the growth rate vanishes when s2 = 0.
Further, it should be kept in mind that the condition for stability or instability, given
by (3.4), holds, provided the magnetic shears s1 and s2 are positive. This does not
cause loss of generality because the coordinate system can be suitably chosen to make
the magnetic shears positive. It may be further observed that a jump in viscosity at
the interface is not essential for this instability to occur and, as seen from (3.3),
instability can occur even for m =1. We also notice that when χ = 1 (i.e. no jump in
the magnetic diffusivities at the interface) there can be no instability of the interface.
Therefore, a difference in the magnetic diffusivities of the two fluids is essential for the
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Im(C1)

α Numerical Short wavelength

10 0.04850 0.05
20 0.01247 0.0125
30 0.005549 0.005556
40 0.003122 0.003125

Table 1. Effect of wavenumber α on the growth rate Im(C1) for r = 1, m= 1, χ = 2, S = 0,
M =0 and P2 = 0.025.

instability studied in this manuscript to occur. It may be mentioned that in this study,
since our focus is on the effect of a jump in magnetic diffusivities at the interface
on the stability of the configuration, we have not considered the effect of gravity.
If this were taken into account, we would expect a stabilizing or destabilizing effect
depending on whether the lighter or heavier fluid is on top. Equation (3.3) for the
growth rate would be valid in its present form either in zero gravity or in the presence
of gravity if the two fluids have equal densities.

4. A numerical solution for linear stability
In this section, we shall solve the equations governing linear stability without

making a short-wavelength approximation. Hooper & Boyd (1983) had used an exact
solution of the linearized equation in each fluid in terms of an Airy function. However,
in our study where, in each fluid, we have two coupled equations for ψ and f , we
have not been able to find an exact closed-form solution. Instead, we use the finite-
difference method to convert the governing system, comprising of equations (2.30)–
(2.33), together with boundary conditions (2.34)–(2.39) and (2.41), to a generalized
matrix eigenvalue problem Ax = C1Bx, where A and B are complex square matrices,
C1, the growth rate, is the eigenvalue and x, the eigenvector, contains values of ψ and
f at different grid-points. Since the equations are to be solved on an infinite domain
with the requirement that the solutions vanish asymptotically at infinity, for the finite-
difference scheme we choose a large value ymax and assume that for |y| >ymax both
ψ and φ vanish identically. In the interval [−ymax, ymax] we choose a set of uniformly
spaced grid-points defined by yj , j = −N, −N + 1, · · · , −1, 0, 1, · · · , N − 1, N , where
yj = (j/N)ymax . We can now write the equations in the two fluid regions and the
boundary conditions at y = 0 using finite-difference approximations. The difficulty is
in imposing the boundary conditions at the interface for the fourth-order equation for
ψ and obtaining a non-singular B matrix needed for solving the generalized eigenvalue
problem. In the Appendix, we give the details of the finite-difference scheme we have
used which overcomes these difficulties.

The spectrum of eigenvalues C1 is determined by the set of parameters r , m, χ , S, M ,
P2 and α. Furthermore, ymax and N must be chosen sufficiently large for convergence.
For r = 1, m =1, χ = 2, S =0, M = 0, P2 = 0.025 and α = 10, we have computed the
spectrum with various values of ymax and N . In each case, we obtain only one growing
mode, while the rest of the modes are damped. It is found that ymax = 6 and N =120
are sufficient to give the growth rate of the unstable mode correct to 3 significant
figures. As α becomes large, the numerical results should tend towards the short
wavelength results. To check this, we vary α keeping all other parameters unchanged.
The results of the numerical and short-wavelength calculations are shown in table 1.
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It can be seen that for α = 10, the numerical and short-wavelength results differ by
about 3% while for α =40 the two agree to 3 significant figures. We further observe
that, in this range of wavenumbers, the growth rate Im(C1) increases with decrease in
α. The question naturally arises as to whether this trend continues for smaller values
of α. To check this, we carry out numerical runs for α = O(1) and α � 1 with different
values of χ and all other parameters unchanged. The results for χ = 1.5, 2.0 and 3.0
are shown in figure 2(a). Although the analytical study assumed a short-wavelength
approximation, the numerical results show that the instability is present even up to
perturbations of long wavelength. Furthermore, the growth rate reaches a maximum
for a value of α which is O(1). Figure 2(a) also shows that the maximum growth
rate occurs for shorter wavelengths as χ increases. This trend is further confirmed
by figure 2(b) for χ =1.01 and figure 2(c) for χ = 100. Next, we study the effect of
varying P2. In figure 3 we plot the growth rates against wavenumber for P2 = 1 and
P2 = 10 for χ = 2 with all other parameters the same as before. To study the effect
of viscosity ratio, we have computed growth rates for m =0.1 and m =10 with r = 1,
χ =2, S = 0, M = 0 and P2 = 0.025. The results are shown in figure 4. Again, we find
maximum growth rate for α =O(1) and agreement with (3.3) for short wavelengths.
The largest growth rate shifts to longer wavelengths with increase in P2 or decrease
in m.

We have also computed the eigenfunction. With r = 1, m =1, χ = 2, S = 0, M =0
and P2 = 0.025, we have computed ψ(y) and φ(y) for the unstable mode and we find
that ψ is purely imaginary while φ is real, which means that ψ and φ are 90◦ out
of phase. The profiles of Im[ψ(y)] and Re[φ(y)] for the unstable mode for α = 10,
1, 0.1 are shown in figure 5. We observe that both ψ and φ become small as we
approach ±ymax , justifying our truncating the solutions outside these limits. These
plots also show the importance of rescaling the coordinates using the wavenumber.
In the rescaled coordinates, the lengthscale of the unstable mode, in a direction
normal to the interface, is of order unity even for wavenumbers differing by orders
of magnitude.

Next, we study the effect of the surface tension parameter S. We first consider short-
wavelength perturbations with α = 10 and, for comparison with the analytical results,
we choose S such that α3S = O(1). For r = 1, m =1, χ = 2, M = 0 and P2 = 0.025, we
compute the growth rate for different values of S. The results are given in table 2.
Again, we observe good agreement between the numerical and short-wavelength
results. The short-wavelength calculation predicts that S = 0.0005 is sufficient to
stabilize the configuration. Numerical calculations indicate that stabilization occurs
for S = 0.00050045. We now relax the requirement of short wavelength. The effect of
surface tension on the growth rate of the instability is shown in figure 6. As expected,
the stabilizing effect of surface tension becomes much smaller as the wavelength
of the mode increases. We observe that while for α = 10, stabilization occurs for
S ≈ 0.0005, for α = 1, we require S ≈ 0.5. Thus, although the short wavelength
analysis predicts that surface tension has a very strong stabilizing effect, the numerical
results show that stabilization is much weaker for α = O(1) at which the instability
has maximum growth rate. Therefore, the instability due to a jump in magnetic
diffusivity can persist for α = O(1) even when the surface tension parameter S is quite
large.

Finally, we study the effect of the magnetic parameter M . Again, we consider short-
wavelength perturbations with α =10 and for consistency with analytical calculations
we choose M such that αM = O(1). For r =1, m =1, χ =2, S = 0, P2 = 0.025 and
α = 10, we study the effect of variation in M on the growth rate. The results are
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Figure 2. Growth rate Im(C1) vs. wavenumber α for different magnetic diffusivity ratios
(a) �, χ = 1.5; +, 2.0; ∗, 3.0, (b) χ = 1.01, (c) χ = 100 and with r = 1, m = 1, S = 0, M = 0
and P2 = 0.025.
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Figure 3. Growth rate Im(C1) vs. wavenumber α for different magnetic Prandtl numbers,
�, P2 = 1; +, 10, and with r = 1, m = 1, χ = 2, S = 0 and M = 0.
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Figure 4. Growth rate Im(C1) vs. wavenumber α for different viscosity ratios, �, m = 0.1;
+, 10, and with r = 1, χ = 2, S = 0, M = 0 and P2 = 0.025.

Im(C1)

S Numerical Short wavelength

0.0 0.04850 0.05
0.0001 0.03892 0.04
0.0002 0.02928 0.03
0.0003 0.01959 0.02
0.0004 0.00984 0.01
0.0005 0.00004 0.0
0.0006 −0.00981 −0.01

Table 2. Effect of surface tension parameter S on the growth rate Im(C1) for r = 1, m= 1,
χ = 2, M = 0 and P2 = 0.025 and wavenumber α =10.
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Figure 5. Eigenfunctions ∗, Im[ψ(y)] and +, Re[φ(y)] for different wavenumbers (a) α = 10,
(b) α = 1, (c) α = 0.1 and with r = 1, m = 1, χ = 2, S = 0, M = 0 and P2 = 0.025.

shown in table 3. Again, there is good agreement between the numerical and
short-wavelength results. While the short wavelength analysis predicts that stabi-
lization occurs at M = −0.05, the numerical study predicts stabilization at M =
−0.050045. We have also carried out numerical studies for disturbances of arbitrary
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Figure 6. Growth rate Im(C1) vs. wavenumber α for different values of the surface tension
parameter S and with r = 1, m = 1, χ = 2, M = 0 and P2 = 0.025. �, S = 0; +, 0.0005; ∗,
0.5; ×, 500.

Im(C1)

M Numerical Short wavelength

0.10 0.14020 0.15
0.05 0.09524 0.10
0.0 0.04850 0.05

−0.04 0.00987 0.01
−0.05 0.00004 0.0
−0.06 −0.00985 −0.01
−0.10 −0.05005 −0.05

Table 3. Effect of magnetic parameter M on the growth rate Im(C1) for r = 1, m= 1, χ = 2,
S = 0 and P2 = 0.025 and wavenumber α = 10.

wavelengths. The effect of the magnetic parameter on the growth rate of the instability
is shown in figure 7. Again, for α = O(1) the effect of M is weaker than for short
wavelengths. However, the variation with wavenumber is not as significant as for
surface tension.

Thus, our numerical study confirms the results of the short-wavelength calculations.
It also shows that the maximum growth rate occurs for α = O(1). In the short
wavelength study, α → ∞, it was also assumed that αM = O(1) and α3S = O(1), from
which it is not clear what values of α, M and S would be appropriate for these results
to be valid. The numerical study shows that for some chosen values of α, M and S

we do obtain an instability. It can also be seen that surface tension which had a very
strong stabilizing effect for short-wavelength perturbations has a far weaker effect
on the modes which have the largest growth rate, which suggests that it might be
possible to observe this instability experimentally. In the next section, we discuss how
the fluids should be chosen in order to study this instability in an experimental set-up.
The numerical method in this section can be used to ensure that the parameters are
suitably chosen so that we obtain an instability.
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Figure 8. A sketch of the perturbed interface.

5. Physical explanation of the instability
In this section, we give an explanation of the mechanism of the instablity. Let us

consider the case M > 0 and χ − 1 > 0 (i.e. s1 > s2). We imagine that the interface is
slightly perturbed as in figure 8. Since s1 > s2, at the point A where the interface is
displaced upwards, the unperturbed magnetic field in fluid 1 is larger than that in
fluid 2. Continuity of the tangential component of the magnetic field at the interface
requires existence of perturbations in the magnetic field such that the perturbation
should be in the negative x-direction in fluid 1 and in the positive x-direction in fluid
2. Such a magnetic field can be produced by a perturbation current j flowing in the
positive z-direction, as shown in figure 9. Owing to the presence of the magnetic field
B0 in the positive x-direction, the Lorentz force will act in the positive y-direction
leading to the displacement of the interface at A further upwards. Similarly, at the
point B , where the interface is displaced downwards, the directions of the magnetic
perturbations on both sides of the interface are reversed. The resulting current in
the presence of the magnetic field B0ex then leads to a Lorentz force which tends to
push the interface further downwards. Thus, we find that a small disturbance at the
interface tends to grow and cause instability.

When M > 0 and χ − 1 < 0 (i.e. s1 <s2), the directions of perturbations in the
magnetic field along the x-direction on both sides of the disturbed interface will be
reversed. Consequently, the direction of the Lorentz force is also reversed and it will
push the peak A of the perturbed interface downwards and the trough B upwards.
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Figure 9. Generation of Lorentz force at the perturbed interface.
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Figure 10. Different cases of the sheared magnetic field (a) χ > 1, unstable, (b) χ < 1, stable.

Evidently, in this case there will be stabilization. The two cases discussed are shown
in figure 10. These are the only two cases possible for χ �= 1 if we assume that M > 0
and s1, s2 > 0. As explained in § 1, any other configuration can be made to satisfy
these two conditions by an appropriate choice of coordinate system.

It will be noticed that our physical explanation does not require that the
perturbation be of short wavelength. Therefore, a configuration which is unstable
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would be expected to be unstable to perturbations of all wavelengths. This is confirmed
by our numerical study.

There is one significant difference between our result and that of Hooper &
Boyd (1983). In our analysis, the expression for the growth rate (3.3) contains a
term involving the unperturbed magnetic field at the interface. This term has no
counterpart in the result of Hooper & Boyd (1983). This is because the velocity at
the interface can be removed by choosing a frame of reference which moves with the
velocity of the fluid at the interface. However, the unperturbed magnetic field at the
interface cannot be removed by a similar argument.

Finally, we suggest a set-up for experimental realization of the configuration studied
in this paper. A constant electric field in the z-direction is produced by two conducting
plates kept at two different potentials. This electric field will produce a constant current
density in the z-direction, which will be different in the two fluids owing to the different
values of electrical conductivity. If the experimental configuration is very long in the x-
direction compared to the y-direction, this current will produce a magnetic field in the
x-direction sheared in the y-direction. The magnetic shear will be proportional to the
current density which will be proportional to the electrical conductivity and inversely
proportional to the magnetic diffusivity. Therefore, boundary condition (2.13) will be
automatically satisfied. It should be mentioned that the distance between the plates
must be large for the two-dimensional model to be valid.

For the experimental study, it would be desirable to eliminate the destabilizing
effect of viscosity difference and the stabilizing or destabilizing effect of the density
difference of the two fluids. Since we do not have an unperturbed shear flow, difference
in viscosities does not drive an instability, it merely influences the growth rate of the
instability because of difference in electrical conductivity. In the presence of gravity,
density difference would have a stabilizing or destabilizing effect. To eliminate this,
it would be desirable to have two fluids which have the same density but different
electrical conductivities. This might be possible if one of the fluids is a mixture
whose composition can be chosen such that its density matches that of the other
fluid.

6. Discussion
It is shown that an unbounded configuration of two viscous electrically conducting

fluids permeated by a sheared magnetic field is always unstable for short-wavelength
disturbances (in the absence of surface tension) if the magnetic field vanishes at
the interface and the magnetic diffusivities of the two fluids are different. Instability
may or may not occur if the field does not vanish at the interface and there is no
instability if the magnetic diffusivities of the two fluids are equal. An experimental
set-up for the realization of the sheared magnetic field assumed in the analysis is
described.

One limitation of our analysis is that it is confined to two-dimensional disturbances.
In this paper our aim was to demonstrate the existence of a new instability and for
this a study of two-dimensional disturbances suffices. However, the question remains
whether there can exist three-dimensional disturbances which have a faster growth
rate and this needs further investigation.

We now compare our work with earlier studies of instabilities of the interface
between two fluids with different electrical conductivities, in the context of aluminium
reduction cells. Sneyd (1985) considered the situation where the equilibrium current
is in a direction perpendicular to the interface between the two fluids, unlike the
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present study where the equilibrium current is parallel to the interface. The instability
occurs because a perturbation of the interface causes perturbation in layer thickness,
leading to redistribution of electric current with consequent change in the Lorentz
force. Therefore, the mechanism of instability requires a finite layer thickness. Sneyd
(1992) generalized this study to include a horizontal component of current in one of
the fluids and found instability driven by vertical gradients of the horizontal magnetic
field. However, again this instability disappears when the layer depth is infinite and
is, therefore, different from the instability discussed in this paper. Further, Sneyd &
Wang (1994) showed that in an aluminium reduction cell carrying a uniform normal
current, instability can occur on the cryolite/aluminium interface owing to mode
interactions, the electromagnetic perturbation force due to one mode feeding energy
into the other. More recently, Davidson & Lindsay (1998) have studied interfacial
waves in aluminium reduction cells under the influence of vertical current density
and found unstable travelling waves under certain conditions. Again, these become
stable when the boundaries are removed. Therefore, in contrast to earlier studies,
we obtain an instability which does not require the presence of physical boundaries.
Moreover, in the short-wavelength approximation, we obtain a simple expression for
growth rate which clearly shows that the instability is due to a jump in magnetic
diffusivities. This does not seem to have been brought out in any of the earlier
studies.

Again, a continuous variation in the electrical conductivity is known to give rise to
a rippling instability. In a pioneering study, Furth et al. (1963) showed that a plasma
which is stable in the ideal magnetohydrodynamic model may become unstable if
the plasma is considered resistive. They identified three such resistive instabilities.
One of these is the rippling instability which occurs when there is a gradient in the
electrical conductivity. All these instabilities require the presence of a resonant layer
given by k · B = 0, where k is the wavenumber of the mode and B is the magnetic
field, and there is a thin resistive layer in the neighbourhood of the resonance. By
contrast, in our study, the wavenumber has a component α along the magnetic
field and we find instability even when α is large and the magnetic field does not
vanish, though the growth rate is not as large as for the resistive instabilities found
by Furth et al. (1963).

Appendix. The finite-difference scheme
In order to solve the equations for linear stability in an infinite region using the

finite-difference method, as discussed in § 4, we choose a large value of ymax and on
the interval [−ymax, ymax] we choose a set of uniformly spaced grid-points defined
by yj , j = −N, −N + 1, · · · , −1, 0, 1, · · · , N − 1, N , where yj =(j/N)ymax . The values
of ψ and f at grid-points yj are denoted by ψ1,j and f1,j for 1 � j � N and ψ2,j

and f2,j for −N � j � −1. Using (2.34) and (2.39), we define ψ0 and f0 to be the
values of ψ and f , identical for both fluids, at y = 0. Using second-order-accurate
central difference approximations, the finite-difference approximations for equations
(2.30)–(2.33) can be readily written as

[ψ1,j−2 − (4 + 2h2)ψ1,j−1 + (6 + 4h2 + h4)ψ1,j − (4 + 2h2)ψ1,j+1 + ψ1,j+2]

+
ih2

α2P2

m(αM + χyj )[f1,j−1 − (2 + h2)f1,j + f1,j+1]

= − C1

ih2

α2P2

m

r
[ψ1,j−1 − (2 + h2)ψ1,j + ψ1,j+1], (A 1)
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[ψ2,j−2 − (4 + 2h2)ψ2,j−1 + (6 + 4h2 + h4)ψ2,j − (4 + 2h2)ψ2,j+1 + ψ2,j+2]

+
ih2

α2P2

(αM + yj )[f2,j−1 − (2 + h2)f2,j + f2,j+1]

= − C1

ih2

α2P2

[ψ2,j−1 − (2 + h2)ψ2,j + ψ2,j+1], (A 2)

f1,j−1 − (2 + h2)f1,j + f1,j+1 +
ih2

α2
χ(αM + χyj )ψ1,j = −C1

ih2

α2
χf1,j , (A 3)

f2,j−1 − (2 + h2)f2,j + f2,j+1 +
ih2

α2
(αM + yj )ψ2,j = −C1

ih2

α2
f2,j . (A 4)

Equation (A 3) is imposed at grid-points j = 1, · · · , N and (A 4) at j = −N, · · · , −1. It
is assumed that f1,N+1 = f2,−N−1 = 0 and f1,0 = f2,0 = f0. Similarly, (A 1) and (A 2) are
imposed at grid-points j =2, · · · , N and j = −N, · · · , −2, where it is further assumed
that ψ1,N+1 = ψ1,N+2 = ψ2,−N−1 =ψ2,−N−2 = 0 and ψ1,0 =ψ2,0 = ψ0. The difficulty in
using (A 1) at j = 1 is that this would require ψ1,−1 which is not defined. A
similar difficulty is encountered for (A 2) at j = −1. To overcome this problem we
define

Ω0 =

(
d2ψ2

dy2

)
y = 0

. (A 5)

Then, from (2.36) we obtain

(
d2ψ1

dy2

)
y =0

=mΩ0 + (m − 1)ψ0. (A 6)

We can now write the finite-difference approximations for (2.30) at j =1

h2mΩ0 + h2(m − 1)ψ0 − (2 + 2h2)ψ0 + (5 + 4h2 + h4)ψ1,1

− (4 + 2h2)ψ1,2 + ψ1,3 +
ih2

α2P2

m(αM + χy1)[f0 − (2 + h2)f1,1 + f1,2]

= − C1

ih2

α2P2

m

r
[ψ0 − (2 + h2)ψ1,1 + ψ1,2], (A 7)

and for (2.31) at j = −1

h2Ω0 − (2 + 2h2)ψ0 + (5 + 4h2 + h4)ψ2,−1 − (4 + 2h2)ψ2,−2

+ ψ2,−3 +
ih2

α2P2

(αM + y−1)[f2,−2 − (2 + h2)f2,−1 + f0]

= − C1

ih2

α2P2

[ψ2,−2 − (2 + h2)ψ2,−1 + ψ0]. (A 8)

In order to write finite-difference approximations for the remaining boundary condi-
tions (2.35), (2.37) and (2.38), we use second-order one-sided difference approximations
for first derivatives and obtain

− ψ2,−2 + 4ψ2,−1 − 6ψ0 + 4ψ1,1 − ψ1,2 = 0, (A 9)
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− 6Ω0 +
1

mh2
[−3h2(m − 1)ψ0 + (4 + 9h2)ψ0 − (9 + 12h2)ψ1,1 + (6 + 3h2)ψ1,2 − ψ1,3]

− 1

h2
[−(4 + 9h2)ψ0 + (9 + 12h2)ψ2,−1 − (6 + 3h2)ψ2,−2 + ψ2,−3]

+
i

α2P2

[
C1

r
(−3ψ0 + 4ψ1,1 − ψ1,2) +

(
αM − Sα3

χ − 1

)
(−3f0 + 4f1,1 − f1,2) − 2hχf0

]

− i

α2P2

[
C1(3ψ0 − 4ψ2,−1 + ψ2,−2) +

(
αM − Sα3

χ − 1

)
(3f0 − 4f2,−1 + f2,−2) − 2hf0

]

=0, (A 10)

2h(χ − 1)ψ0 =C1(f2,−2 − 4f2,−1 + 6f0 − 4f1,1 + f1,2). (A 11)

We now need to collect the finite-difference equations to form the generalized
matrix eigenvalue problem. The first difficulty is that (A 9) does not involve C1

and, therefore, would lead to a row of zeros in matrix B, making it singular. To
overcome this, we solve (A 9) for ψ0 and substitute this into the remaining equations.
Further, we observe that there are no terms corresponding to Ω0 in the matrix
B. This implies a column of zeros in matrix B making it singular. To overcome
this, we solve (A 10) for Ω0 and substitute it into the remaining equations. We
are now left with a set of 4N + 1 equations, namely (A 1) for j = 2, · · · , N , (A 2)
for j = −N, · · · , −2, (A 3) for j = 1, · · · , N , (A 4) for j = −N, · · · , −1 and equations
(A 7), (A 8) and (A 11), involving 4N + 1 variables, namely, ψ1,j (j = 1, · · · , N ), ψ2,j

(j = −N, · · · , −1), f1,j (j = 1, · · · , N), f2,j (j = −N, · · · , −1) and f0, in the form
of a generalized matrix eigenvalue problem of the form Ax = C1Bx where the
matrix B is now non-singular. This can be solved using readily available library
routines.
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